摘要

Doped nanocarbon materials (e.g., carbon nanotubes, graphene) are considered as effective electrocatalyst supports for fuel cells, and their electrochemical properties are closely related to the synthetic methods and the types of doping elements. In the current paper, we report a novel approach to synthesize sulfur-doped multi-walled carbon nanotubes (S-MWCNTs) as a highly efficient support material for Pt nanoparticle catalysts. The S-MWCNTs are obtained by annealing poly(3,4-ethylenedioxythiophene) (PEDOT) functionalized multi-walled carbon nanotubes at 800 degrees C. The prepared nanohybrids were physically characterized by Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It has been found that the doping of sulfur into MWCNTs could significantly improve the dispersion of supported Pt nanoparticles of 2.37 nm in size and increase the electrochemically active surface area (ECSA, 161.4 m(2) g(-1)). The doped sulfur atoms not only provide uniformly dispersed anchoring sites for the deposition of Pt nanoparticles on the surface of MWCNTs but also enhance the electron transfer interaction between Pt nanoparticles and the S-MWCNT support. The electrochemical properties of the catalysts were evaluated by using cyclic voltammetry (CV) and chronoamperometry (CA) techniques. The results demonstrate that the as-prepared Pt/S-MWCNTs exhibit much higher electrocatalytic activity, long-term durability and CO-tolerance ability for the methanol oxidation reaction (MOR) compared to the undoped MWCNT supported Pt and commercial Pt/C catalysts.