A Comprehensive Small Interfering RNA Screen Identifies Signaling Pathways Required for Gephyrin Clustering

作者:Wuchter Jennifer; Beuter Simone; Treindl Fridolin; Herrmann Thoralf; Zeck Guenther; Templin Markus F; Volkmer Hansjuergen*
来源:Journal of Neuroscience, 2012, 32(42): 14821-14834.
DOI:10.1523/JNEUROSCI.1261-12.2012

摘要

The postsynaptic scaffold protein gephyrin is clustered at inhibitory synapses and serves for the stabilization of GABA(A) receptors. Here, a comprehensive kinome-wide siRNA screen in a human HeLa cell-based model for gephyrin clustering was used to identify candidate protein kinases implicated in the stabilization of gephyrin clusters. As a result, 12 hits were identified including FGFR1 (FGF receptor 1), TrkB, and TrkC as well as components of the MAPK and mammalian target of rapamycin(mTOR) pathways. For confirmation, the impact of these hits on gephyrin clustering was analyzed in rat primary hippocampal neurons. We found that brain-derived neurotrophic factor (BDNF) acts on gephyrin clustering through MAPK signaling, and this process may be controlled by the MAPK signaling antagonist sprouty2. BDNF signaling through phosphatidylinositol 3-kinase (PI3K)-Akt also activates mTOR and represses GSK3 beta, which was previously shown to reduce gephyrin clustering. Gephyrin is associated with inactive mTOR and becomes released upon BDNF-dependent mTOR activation. In primary neurons, a reduction in the number of gephyrin clusters due to manipulation of the BDNF-mTOR signaling is associated with reduced GABA(A) receptor clustering, suggesting functional impairment of GABA signaling. Accordingly, application of the mTOR antagonist rapamycin leads to disinhibition of neuronal networks as measured on microelectrode arrays. In conclusion, we provide evidence that BDNF regulates gephyrin clustering via MAPK as well as PI3K-Akt-mTOR signaling.

  • 出版日期2012-10-17