摘要

There have been a few recent numerical implementations of the stress-jump condition at the interface of conjugate flows, which couple the governing equations for flows in the porous and homogenous fluid domains. These previous demonstration cases were for two-dimensional, planar flows with simple geometries, for example, flow over a porous layer or flow through a porous plug. The present study implements the interfacial stress-jump condition for a non-planar flow with three velocity components, which is more realistic in terms of practical flow applications. The steady, laminar, Newtonian flow in a stirred micro-bioreactor with a porous scaffold inside was investigated. It is shown how to implement the interfacial jump condition on the radial, axial, and swirling velocity components. To avoid a full three-dimensional simulation, the flow is assumed to be independent of the azimuthal direction, which makes it an axisymmetric flow with a swirling velocity. The present interface treatment is suitable for non-flat surfaces, which is achieved by applying the finite volume method based on body-fitted and multi-block grids. The numerical Simulations show that a vortex breakdown bubble, attached to the free surface, occurs above a certain Reynolds number. The presence of the porous scaffold delays the onset of vortex breakdown and confines it to a region above the scaffold.

  • 出版日期2009-5-30
  • 单位南阳理工学院