摘要

This paper investigates the adaptive distributed formation control problem for multiple nonholonomic wheeled mobile robots. First, the formation control problem is converted into a state consensus problem by the aid of a variable transformation. Then, distributed kinematic controllers and adaptive dynamic controllers are developed for each robot such that a group of nonholonomic mobile robots asymptotically converge to a desired geometric pattern with its centroid moving along the specified reference trajectory. The specified reference trajectory is assumed to-be the trajectory of a virtual leader whose information is available to only a subset of the followers. Also the followers are assumed to have only local interaction. Some sufficient conditions are derived for accomplishing the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples illustrate the effectiveness of the proposed controllers.