Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals

作者:Levinsky Alexandra; Papyan Surik; Weinberg Guy; Stadheim Trond; Eide Per Kristian*
来源:Medical Engineering & Physics, 2016, 38(5): 477-484.
DOI:10.1016/j.medengphy.2016.02.009

摘要

The aim of the present study was to examine whether a method for estimation of non-invasive ICP (nICP) from transcranial acoustic (TCA) signals mixed with head-generated sounds estimate the static and pulsatile invasive ICP (iICP). For that purpose, simultaneous iICP and mixed TCA signals were obtained from patients undergoing continuous iICP monitoring as part of clinical management. The ear probe placed in the right outer ear channel sent a TCA signal with fixed frequency (621 Hz) that was picked up by the left ear probe along with acoustic signals generated by the intracranial compartment. Based on a mathematical model of the association between mixed TCA and iICP, the static and pulsatile nICP values were determined. Total 39 patients were included in the study; the total number of observations for prediction of static and pulsatile iICP were 5789 and 6791, respectively. The results demonstrated a good agreement between iICP/nICP observations, with mean difference of 0.39 mmHg and 0.53 mmHg for static and pulsatile ICP, respectively. In summary, in this cohort of patients, mixed TCA signals estimated the static and pulsatile iICP with rather good accuracy. Further studies are required to validate whether mixed TCA signals may become useful for measurement of nICP.

  • 出版日期2016-5