摘要

Silicon nitride is used for demanding tasks due to its high stiffness, strength and, especially, its high fracture toughness. Examples include cutting tools, forming rolls and ball bearings. The microstructure is characterized by elongated beta-Si3N4 grains of different size and shape, which lead to the increased fracture toughness. Consequently, the paper will present an algorithm for the generation of three-dimensional and periodic silicon nitride-like microstructures, which will be used for micromechanical finite element simulations. The structure generation algorithm enhances the sequential adsorption technique with growth of particles and steric hindrance, which are motivated by experimental results. Results of the structure generator, such as the pseudo-time evolution and its statistical geometric distributions are presented and compared to literature data. With the finite element simulations, using a periodic unit cell, a validation of the model with literature values for Young%26apos;s modulus and Poisson%26apos;s ratio was possible.