High-resolution structure of a retroviral protease folded as a monomer

作者:Gilski Miroslaw; Kazmierczyk Maciej; Krzywda Szymon; Zabranska Helena; Cooper Seth; Popovic Zoran; Khatib Firas; DiMaio Frank; Thompson James; Baker David; Pichova Iva; Jaskolski Mariusz*
来源:Acta Crystallographica Section D-Biological Crystallography, 2011, 67(11): 907-914.
DOI:10.1107/S0907444911035943

摘要

Mason-Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C-alpha deviations are large and the active-site 'DTG' loop (here NTG) deviates up to 2.7 angstrom from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 angstrom) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections, including AIDS.

  • 出版日期2011-11