摘要

The low-copy-number, 9.0-kb pSM19035-derived plasmid pBT233, is stably inherited in Bacillus subtilis. The complete nucleotide (nt) sequence of pBT233 has been determined. Analysis of the nt sequence revealed nine major open reading frames (orfs). The repS, erm1 and erm2 genes have been assigned to three of these orfs, and given the gene order, repS-orf alpha-orf beta-orf gamma-orf delta-orf epsilon-orf zeta-erm2-erm1. The organization of genes of the repS-orf gamma region resembles the organization of genes in the repE-orfI region of pAM beta 1. Messenger RNA species of molecular weights corresponding to repS, or orf alpha+orf beta, orf gamma, orf delta, and orf epsilon+orf zeta were detected by Northern blotting. Proteins of 23.8, 81.3, 34.4, 10.7 and 32.4 kDa correspond to Orfs beta, gamma, delta, epsilon and zeta, respectively. Bands of radioactive proteins of 25, 81, 34, 10 and 32 kDa were detected using the T7 promoter-expression system. The orf beta and orf gamma encode proteins that share homology to site-specific recombinases and type-I topoisomerases, respectively. The orfs, delta, epsilon and zeta, encode proteins with unknown activity. Deletion of a 1.5-kb segment (nt 2999-4552) with coding capacity for orf beta, orf gamma and orf delta does not seem to affect plasmid maintenance. Removal of a 3.0-kb fragment (nt 4598-7689) with coding capacity for orf epsilon orfy zeta reduced plasmid segregational stability, but deletion of a 5.2-kb DNA segment (nt 2546-7826) abolished it. On the basis of these observations, we conclude that pBT233 stabilization relies on a complex system, involving the resolution of plasmid oligomers and additional unknown component(s).

  • 出版日期1993-12-22