摘要

The proper partitioning of the genome during meiosis depends on the correct segregation of chromosomes. Errors in this process result in the production of aneuploid gametes, a major cause of birth defects and infertility in humans. In order to segregate properly in meiosis, homologous chromosome partners must attach to microtubules that emanate from opposites poles of the spindle. However, a recent study in yeast has shown that, remarkably, the initial attachments between microtubules and the chromosomes are usually incorrect, which would lead to catastrophic segregation errors, but they are nearly always corrected through the detachment and reattachment of the microtubules. Here we review the reasons for the initial incorrect attachments, which stem from the timing of their formation early in the spindle assembly process, and the fact that the microtubule organizers, called spindle pole bodies in yeast, are not equal. One spindle pole body is older and better able to produce microtubules that attach to the chromosomes. We draw parallels to recent findings in animal cells and suggest that these early microtubule attachments, while often incorrect, may serve an important role in spindle assembly, which, in the long-term, promotes high-fidelity chromosome segregation.

  • 出版日期2013-7-1