摘要

Rotating modulation technique is a mature method that has been widely used in the rotational inertial navigation system (RINS). Tri-axis RINS has three gimbals, and the Inertial Measurement Unit can rotate along three directions to modulate the inertial devices' errors, so that the navigation accuracy of the system can be greatly improved. However, the outputs of attitudes are easily affected by the non-orthogonal angles of gimbals, which should be accurately calibrated and compensated. In this paper, the effects of the non-orthogonal angles on the attitudes are discussed detailed and simulations based on Matlab are conducted to verify that firstly; then, a self-calibration method based on the outputs of the fiber optic gyroscope and photoelectric encoder is proposed. Experimental results in a real tri-axis RINS show that the attitude outputs accuracy are improved from 150 to less than 10, which verify the practicability of the calibration method proposed in this paper.