Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine scanning

作者:Verhaeghe Tom; Diricks Margo; Aerts Dirk; Soetaert Wim; Desmet Tom*
来源:Journal of Molecular Catalysis B: Enzymatic , 2013, 96: 81-88.
DOI:10.1016/j.molcatb.2013.06.014

摘要

Sucrose phosphorylase (SP) is a promising biocatalyst for the production of special sugars and glycoconjugates, but its transglycosylation activity rarely exceeds the competing hydrolytic reaction. Knowing how specificity is controlled, would allow to optimise this activity in an efficient way by means of enzyme engineering. Therefore, in this study, a map of the acceptor site of the SP from Bifidobacterium adolescentis was created by substituting each residue by alanine and analysing the influence on the affinity for both the natural (inorganic phosphate and fructose) and alternative acceptors (D-arabitol and pyridoxine). All residues examined were found to contribute to the specificity for phosphate (Arg135, Leu343, Tyr344), fructose (Tyr132, Asp342) or both (Pro134, Tyr196, His234, Gln345). Alternative acceptors that are glycosylated rather efficiently (e.g. D-arabitol) were found to interact with the same residues as fructose, whereas poor acceptors like pyridoxine do not seem to make any specific interactions with the enzyme. Furthermore, it is shown here that SP is already optimised to outcompete water as an acceptor substrate, meaning that it will be very difficult to lower its hydrolytic activity any further. Consequently, increasing the transglycosylation activity towards alternative acceptors seems to be the best strategy, although that would probably require a drastic remodelling of the acceptor site in most cases.

  • 出版日期2013-12