摘要

The cB Omega model, which suggests the defect Gibbs energy is proportional to the isothermal bulk modulus and the mean volume per atom, is first introduced to predict self-diffusion coefficients of oxygen in various silicate and oxide minerals in terms of available elastic data. We develop a new approach to determine constant c in the cB Omega model on the basis of the observed compensation effect between the activation energies and pre-exponential factors, which is critical to the diffusivity prediction. Under anhydrous conditions, the validity of this model is tested by the experimentally determined oxygen self-diffusion coefficients. Our results show that the absolute oxygen diffusion rates derived from the cB Omega model are in agreement with experimental data in a variety of rock-forming minerals including olivine, MgSiO(3) perovskite, spinet, and zircon.