摘要

Combining the partial-Fourier-transform approach with Wenzel-Kramers-Brillouin approximation, we theoretically study the strong-field tunneling ionization of diatomic and polyatomic molecules. First we obtain the analytical expression of momentum distribution at the tunnel exit of diatomic molecules, and then we calculate the alignment-dependent ionization rate at different laser intensities and internuclear distances. We show that the internuclear distance has a significant effect on the alignment dependence of the ionization rate. Using this approach, we can also separate the contributions of each atomic center and show the interference effect between them. Finally, we extend this method to a polyatomic molecule, benzene, as an example.