摘要

The goal of the study was to investigate the influence of asymmetric coupling, between the soma and dendrites, on the nonlinear dynamic behaviour of a two-compartment model. We used a recently published method for generating reduced two-compartment models that retain the asymmetric coupling of anatomically reconstructed motor neurons. The passive input-output relationship of the asymmetrically coupled model was analytically compared to the symmetrically coupled case. Predictions based on the analytic comparison were tested using numerical simulations. The simulations evaluated the nonlinear dynamics of the models as a function of coupling parameters. Analytical results showed that the input resistance at the dendrite of the asymmetric model was directly related to the degree of coupling asymmetry. In contrast, a comparable symmetric model had identical input resistances at both the soma and dendrite regardless of coupling strength. These findings lead to predictions that variations in dendritic excitability, subsequent to changes in input resistance, might change the current threshold and onset timing of the plateau potential generated in the dendrite. Since the plateau potential underlies bistable firing, these results further predicted that asymmetric coupling might alter nonlinear (i.e. bistable) firing patterns. The numerical simulations supported analytical predictions, showing that the fully bistable firing pattern of the asymmetric model depended on the degree of coupling asymmetry and its correlated dendritic excitability. The physiological property of asymmetric coupling plays an important role in generating and stabilizing the bistability of motor neurons by interacting with the excitability of dendritic branches.

  • 出版日期2011-6