摘要

Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent predictor variables are nonnormally distributed. The nonnormal predictor distribution is approximated by a finite mixture distribution. We conduct a simulation study that demonstrates the advantages of the proposed Bayesian model over contemporary approaches (Latent Moderated Structural Equations [LMS], Quasi-Maximum-Likelihood [QML], and the extended unconstrained approach) when the latent predictor variables follow a nonnormal distribution. The conventional approaches show biased estimates of the nonlinear effects; the proposed Bayesian model provides unbiased estimates. We present an empirical example from work and stress research and provide syntax for substantive researchers. Advantages and limitations of the new model are discussed.

  • 出版日期2012