摘要

The use of superelastic shape memory alloy (SMA) bars in the near-surface-mounted (NSM) strengthening application can offer advantages such as improved bond behavior, enhanced deformation capacity, and post-event functionality. This study investigates bond characteristics and load transfer mechanisms between NSM SMA reinforcement and concrete. A modified pullout test specimen that consists of a C-shaped concrete block, where the NSM reinforcement are placed at the center of gravity of the block, was used for experimental investigations. The effects of various parameters such as epoxy type, bonded length, bar diameter, and mechanical anchorage on the bond behavior were studied. The slip of the SMA reinforcement relative to concrete was measured using an optical measurement system and the bond-slip curves were developed. Results indicate that the sandblasted SMA bars exhibit satisfactory bond behavior when used with the correct filling material in NSM strengthening applications, while the mechanical anchorage of SMA bars can significantly increase the bond resistance.

  • 出版日期2017-3