摘要

The significance of arbuscular mycorrhizal fungi (AMF) in the process of plant invasion is still poorly understood. We hypothesize that invasive plants would change local AMF community structure in a way that would benefit themselves but confer less advantages to native plants, thus influencing the extent of plant interactions. An AMF spore community composed of five morphospecies of Glomus with equal density (initial AMF spore community, I-AMF) was constructed to test this hypothesis. The results showed that the invasive species, Solidago canadensis, significantly increased the relative abundance of G. geosperum and G. etunicatum (altered AMP spore community, A-AMF) compared to G. mosseae, which was a dominant morphospecies in the monoculture of native Kummerowia striata. The shift in AMF spore community composition driven by S. canadensis generated functional variation between I-AMP and A-AMF communities. For example, I-AMP increased biomass and nutrient uptake of K. striata in both monocultures and mixtures of K. striata and S. canadensis compared to A-AMP. In contrast, A-AMP significantly enhanced root nitrogen (N) acquisition of S. canadensis grown in mixture. Moreover, mycorrhizal-mediated N-15 uptake provided direct evidence that I-AMF and A-AMF differed in their affinities with native and invading species. The non-significant effect of A-AMF on K. striata did not result from allelopathy as root exudates of S. canadensis exhibited positive effects on seed germination and biomass of K. striata under naturally occurring concentrations. When considered together, we found that A-AMF facilitated the invasion of S. canadensis through decreasing competitiveness of the native plant K. striata. The results supported our hypothesis and can be used to improve our understanding of an ecosystem-based perspective towards exotic plant invasion.