摘要

Entanglement dynamics of two identical non-interacting atoms (qubits) coupled individually with simultaneous classical and quantum fields are studied. The cavity field is filled with a nonlinear Kerr medium and initially prepared in a coherent state. The atoms are initially set up as a Bell-like pure state (BS). We present an approach for diagonalization of time-dependent nonlinear Hamiltonian of the system exactly. Connection between the change in the degree of entanglement and tomography of field state in phase space are also illustrated and interpreted. We demonstrate the possibility of atom-atom (qubit-qubit) entanglement optimization by suitably choosing initial interaction settings. Overall, we show that both classical driving amplitude and detuning as well as Kerr media and initial atomic states acts as the control parameters for the qubit-qubit entanglement. By adjusting of these parameters, accurately, entanglement can be enhanced noticeably and high degree of steady periodical entanglement can be generated. Moreover, starting with initial atomic BSs in presence of classical driving suppresses coherences randomness and considerably accompanied with (for specific values of detuning) slight decrease in their amplitudes. Furthermore, the addition of cross Kerr term suppresses degree of entanglement noticeably, where entanglement creation and enhancement could just be possible if cross Kerr effect is moved out from interaction. Our present approach promises the great advantage of being suitable for large quantum systems of various kinds of nonlinearities.

  • 出版日期2015-8