摘要

The timely and accurate mapping of dynamic disasters and emergencies is an important task that is necessary for supporting the decision-making that can improve the efficiency of rescue and response efforts. The existing emergency symbol libraries are primarily composed of point symbols and simple line symbols, focusing on the representation of disasters, related facilities, and operations. However, various existing response factors (e.g., the distribution and types of emergency forces) are also important for further decision-making and emergency responses; there is a need to design complex and diverse symbols to represent this rich information. Moreover, traditional mapping systems only provide static map symbols that cannot be easily edited after creation, making it difficult to support interactive editing after the symbols are mapped, thus hindering the representation of dynamic disasters and response factors. This article targets a solution of the above issues by proposing a procedural construction method of interactive map symbols for dynamic disasters and emergency responses. There are two primary research points. First, an emergency response and decision symbol library was classified and integrated into the existing attachments to form a richer symbol library for comprehensively representing disasters and emergencies. Second, an interactive map symbol procedural construction method was designed based on (1) primitive geometric compositions and geometric graphics algorithms to construct the map symbol graphics; (2) an interactive graphics control and drawing attributes configuration method to support user interactive editing of the visual variables of the mapped symbols; (3) and a dynamic updating and drawing strategy to support the real-time refreshing of the changing visual variables. The experiment was conducted using the Wenchuan earthquake as a case study, and the results demonstrate a powerful capacity of the produced interactive map symbols, which will contribute to the improvement of the mapping efficiency and representation capability of disasters and emergency response.