摘要

This article proposes a new efficient raw signal simulator for the bistatic synthetic aperture radar (SAR) based on 2D fast Fourier transform (FFT) to deal with cases of both ideal trajectory and trajectory deviation. It begins with analyzing the geometric configuration and the range history of the bistatic SAR in side-looking and squint modes of ideal trajectory as well as trajectory deviation. Then a detailed and mathematical study is conducted on the equivalence relation of bistatic-to-monostatic applications (BTMA) in the case of ideal trajectory and trajectory deviation. Also a set of formulas are derived for the equivalence relation between bistatic SAR and monostatic SAR on some reasonable assumptions. Therefore, the application of the simulation method based on the 2D FFT for the monostatic SAR can be extended to the case of bistatic SAR. Finally, the simulation results prove the validity of this method. By comparing the efficiency of the proposed method with that of the time domain method, it is shown that the former is a few orders of magnitude higher.