摘要

We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of . This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M similar to 0.4-0.7.

  • 出版日期2014-3