摘要

We consider the growth of some indicators of arithmetical complexity of rational orbits of (piecewise) affine maps of the plane, with rational parameters. The exponential growth rates are expressed by a set of exponents; one exponent describes the growth rate of the so-called logarithmic height of the points of an orbit, while the others describe the growth rate of the size of such points, measured with respect to the p-adic metric. Here p is any prime number which divides the parameters of the map. We show that almost all the points in a domain of linearity (such as an elliptic island in an area-preserving map) have the same set of exponents. We also show that the convergence of the p-adic exponents may be non-uniform, with arbitrarily large fluctuations occurring arbitrarily close to any point. We explore numerically the behaviour of these quantities in the chaotic regions, in both area-preserving and dissipative systems. In the former case, we conjecture that wherever the Lyapunov exponent is zero, the arithmetical exponents achieve a local maximum.

  • 出版日期2015-4-1