摘要

The principal site that generates both rapid eye movement (REM) sleep and wakefulness is located in the mesopontine reticular formation, whereas non-rapid eye movement (NREM) sleep is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single-labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double-labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase, or GABA. During NREM, only a few Fos-immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral parabrachial region (CLPB). The number of Fos+ neurons in the CLPB during NREM was significantly greater (67.9 +/- 10.9, P<0.0001) compared with QW (8.0 +/- 6.7), AW (5.2 +/- 4.2), or REM-carbachol (8.0 +/- 4.7). In addition, there was a positive correlation (R=0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however, about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of interactions between these neurons that are activated during NREM and cells of the adjacent pontine tegmentum that are involved in the generation of REM sleep.

  • 出版日期2011-9-5