摘要

The modular multilevel converter (MMC) is receiving wide acceptance in both high- and medium-voltage (MV) applications. However, due to the low (fundamental and second-order) frequency ripple powers in the submodule (SM) capacitors, large capacitance is required to smooth the SM voltage. The SM capacitors account for a large portion of volume and weight in the MMC system. Present methods (e.g., circulating current control, power channels linking upper and lower arms) cannot eliminate the fundamental and second-order ripple powers simultaneously. This paper investigates the feasibility of an active power decoupling technique for solving this issue. By adding a buck-type active power filter (APF) circuit (which contains another energy-storage capacitor), the low-frequency ripple powers can be transferred to the APF capacitor. This significantly reduces the SM voltage ripple and therefore the total capacitance of the SM. To enhance voltage ripple suppression, APF capacitor voltage reference is modified in a closed-loop manner, and a proportional-integral plus repetitive controller is proposed. Simulations and experimental results prove the validity of the method. A comparison with the traditional MMC shows that it can significantly reduce system volume and improve power density. The method is best suited for MV applications where power density is given a high priority.