摘要

A molecular dynamics simulation is employed to investigate the effects of nano-SiO2 particles on the properties of polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) blends and demonstrate the interaction mechanism of nano-SiO2 particles in blend systems. Six blend systems with different concentrations of SiO2 particles (0-12.8%) and two interfacial interaction models of polymers on the SiO2 surface were designed and analyzed in terms of density distribution, mechanical properties, fractional free volume, and X-ray diffraction patterns. The incorporation of nano-SiO2 particles into the PVA/PVP blend systems increased their mechanical properties, densities, and semicrystalline character. Density distribution analysis indicated PVA molecular chains are more easily adsorbed on the SiO2 surface than PVP molecular chains. Finally, an analysis of binding energies and pair correlation functions of interfacial interaction models revealed the interaction mechanism of nano-SiO2 particles in PVA/PVP systems. Hydrogen bond interactions between polar functional groups in polymer molecular chains and the hydroxyl groups of the SiO2 surface are involved in adsorption of the polymers on the SiO2 surface and explain why nano-SiO2 particles can significantly influence the properties of PVA/PVP systems.