摘要

Our understanding of cerebral blood flow (CBF) in the healthy developing brain has been limited due to the invasiveness of methods historically available for CBF measurement. Clinically based studies using radioactive tracers with children have focused on resting state CBF. Yet potential age-related changes in flow during stimulation may affect the blood oxygenation level dependent (BOLD) response used to investigate cognitive neurodevelopment. This study used noninvasive arterial spin labeling magnetic resonance imaging to compare resting state and stimulus-driven CBF between typically developing children 8 years of age, 12 years of age, and adults. Further, we acquired functional CBF and BOLD images simultaneously to examine their relationship during sensory stimulation. Analyses revealed age-related CBF differences during rest; the youngest group showed greater CBF than 12-year-olds or adults. During stimulation of the auditory cortex, younger children also showed a greater absolute increase in CBF than adults. However, the magnitude of CBF response above baseline was comparable between groups. Similarly, the amplitude of the BOLD response was stable across age. The combination of the 8 year olds%26apos; elevated CBF, both at rest and in response to stimulation, without elevation in the BOLD response suggests that additional physiological factors that also play a role in the BOLD effect, such as metabolic processes that are also elevated in this period, may offset the increased CBF in these children. Thus, CBF measurements reveal maturational differences in the hemodynamics underlying the BOLD effect in children despite the resemblance of the BOLD response between children and adults. Hum Brain Mapp 35:3188-3198, 2014.

  • 出版日期2014-7