摘要

Instead of using conventional horizontal axis wind turbine blades, a Magnus wind turbine is equipped with rotating cylinders, which rotate around their own axes according to the principle of the Magnus effect. Based on the blade element momentum (or BEM) theory, an analytical analysis of the Magnus wind turbine power performance is conducted and its expression of power coefficient has been derived in this paper. The analytical solution has shown that there is a close relationship between the power coefficient of Magnus wind turbine and its physical parameters such as the tip rotor solidity, the tip speed ratio of Magnus turbine, and the relative speed of the cylinders rotation. In addition, a numerical BEM computation for the power coefficient of Magnus wind turbine is also performed using experimental lift and drag coefficients of a rotating cylinder obtained in the previous literature in order to validate the analytical solution. As a result, the aerodynamic characteristics of Magnus wind turbine observed in this study will be of some guiding significance for the initial research and preliminary design of Magnus wind turbines.