摘要

This study is concerned with the effect of friction stir welding (FSW) parameters on the mechanical properties and the consumed welding power for AA2024-T35 joints. AA2024-T35 is friction stir welded at different welding speeds (16, 40, and 80 mm/min), rotation speed (900, 1120, and 1400 rpm), and two tool profiles (triangular and square). The welding power is measured and evaluated with two previously established models (O. Frigaad, O. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32A, p 1189-1200; O.P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and Thermal Modelling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 171, p 348-357). The tool profile as well as the welding speed show significant effect on the microstructure especially at lower welding speeds. The increase of the welding speed improves the mechanical properties for both tool profiles whereas it has an insignificant effect on the welding power. The square profile produces better mechanical properties and consumed more power, at 40 mm/min, than the triangular one. Moreover, the welding speed showed a weak effect on the welding power, but the need of power increased with the increase of the rotation speed. The measured power is found to be in agreement with the computed one through a theoretical work established by Heurtier et al. (Mechanical and Thermal Modelling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 171, p 348-357).

  • 出版日期2011-8