摘要

Phosphorylation of the myosin-targeting subunit 1 of myosin light chain phosphatase (MYPT1) plays an important role in the regulation of smooth muscle contraction, and several sites of phosphorylation by different protein Ser/Thr kinases have been identified. Furthermore, in some instances, phosphorylation at specific sites affects phosphorylation at neighboring sites, with functional consequences. Characterization of the complex phosphorylation of MYPT1 in tissue samples at rest and in response to contractile and relaxant stimuli is, therefore, challenging. We have exploited Phos-tag SDS-PAGE in combination with Western blotting using antibodies to MYPT1, including phosphospecific antibodies, to separate multiple phosphorylated MYPT1 species and quantify MYPT1 phosphorylation stoichiometry using purified, full-length recombinant MYPT1 phosphorylated by Rho-associated coiled-coil kinase (ROCK) and cAMP-dependent protein kinase (PKA). This approach confirmed that phosphorylation of MYPT1 by ROCK occurs at Thr(697) and Thr(855), PKA phosphorylates these two sites and the neighboring Ser(696) and Ser(854), and prior phosphorylation at Thr(697) and Thr(855) by ROCK precludes phosphorylation at Ser(696) and Ser(854) by PKA. Furthermore, phosphorylation at Thr(697) and Thr(855) by ROCK exposes two other sites of phosphorylation by PKA. Treatment of Triton-skinned rat caudal arterial smooth muscle strips with the membrane-impermeant phosphatase inhibitor microcystin or treatment of intact tissue with the membrane-permeant phosphatase inhibitor calyculin A induced slow, sustained contractions that correlated with phosphorylation of MYPT1 at 7 to >= 10 sites. Phos-tag SDS-PAGE thus provides a suitable and convenient method for analysis of the complex, multisite MYPT1 phosphorylation events involved in the regulation of myosin light chain phosphatase activity and smooth muscle contraction.

  • 出版日期2016-4-15