摘要

Fipronil is a widely used insecticide in agriculture and can cause potential health hazards to non-target soil invertebrates and nearby aquatic systems. In the present study, a fipronil degrading bacterium was isolated from fipronil contaminated soil, i.e. rhizospheric zone of Zea mays. Morphological, biochemical and molecular characterization of strain indicated that it clearly belongs to Stenotrophomonas acidaminiphila (accession no. KJ396942). A three-factor Box-Behnken experimental design combined with response surface modeling was employed to predict the optimum conditions for fipronil degradation. The optimumpH, temperature and total inocula biomass for the degradation of fipronil were 7.5, 35 degrees C and 0.175 g L-1, respectively. The bacterial strain was able to metabolize 25 mg L-1 fipronil with 86.14 % degradation in Dorn's broth medium under optimum conditions. Metabolites formed as a result of fipronil degradation were characterized with gas liquid chromatograph. A novel fipronil degradation pathway was proposed for S. acidaminiphila on the basis of metabolites formed. Non-sterilized soil inoculatedwith S. acidaminiphila was found to follow first order kinetics with a rate constant of 0.046 d(-1). Fipronil sulfone, sulfide and amide were formed as the metabolites and were degraded below the quantifiable limit after 90 days of time period. Given the high fipronil degradation observed in the present study, S. acidaminiphilamay have potential for use in bioremediation of fipronil contaminated soils.

  • 出版日期2016-2-8