摘要

The cost of DNA sequencing is decreasing year by year, and the era of personalized medicine and the $1000 genome seems to be just around the corner. In order to link genetic variation to gene function, however, we need to learn more about the function of the non-coding genomic elements. The advance of high-throughput sequencing enabled rapid progress in mapping the functional elements in our genome. In the present article, I discuss how intronic mutations acting at Alu elements enable formation of new exons. I review the mutations that cause disease when promoting a major increase in the inclusion of Alu exon into mature transcripts. Moreover, I present the mechanism that represses such a major inclusion of Alu exons and instead enables a gradual evolution of Alu elements into new exons.

  • 出版日期2013-12

全文