摘要

A wirelessly powered and controlled biased-AC electroosmotic (biased-ACEO) lab-on-a-film (LOF) is presented here for particle and fluid manipulation. Amplitude modulation (AM) and inductive coupling are used for wireless transmission of low frequency signals required for excitation of biased -ACED effects employed by the LOF for microfluidic functions. The LOF consists of a receiving coil (for receiving inductively transmitted high frequency signals), surface mounted devices (for recovering a low frequency AC signal) and an array of interdigitated electrodes (IDE, for excitation of biased -ACED effects). Unlike existing wireless lab-on-a-chip devices that have cumbersome set-ups, require high voltages and perform only one microfluidic function, the presented LOF has a compact and flexible structure, works at very low voltage ranges, and can perform several microfluidic operations corresponding to a wirelessly-controlled voltage. When the level of the demodulated signal over the IDE is about 0.7 V, the IDE performs particle enrichment over designated electrodes. The IDE functions as an active mixer at about 2 V; and as a pump when the voltage reaches 3 V. The LOF is prototyped rapidly on a flexible substrate at low cost using inexpensive benchtop equipment with an overall dimension of 10 x 20 mm(2). Though the electrode definition is limited to micro-scales, the LOF prototype has successfully demonstrated desired microfluidic functions. In addition to inductive transmission of low frequency signals, the printed circuit board -based LOF device offers a low cost and effective solution for using small, flexible microfluidic systems in nontraditional clinical diagnostic tools, disposable devices and heath care settings.

  • 出版日期2016-11-1