Phenolic 1,3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism

作者:Zusso Morena; Mercanti Giulia; Belluti Federica; Di Martino Rita Maria Concetta; Pagetta Andrea; Marinelli Carla; Brun Paola; Ragazzi Eugenio; Lo Rita; Stifani Stefano; Giusti Pietro*; Moro Stefano
来源:British Journal of Pharmacology, 2017, 174(10): 1090-1103.
DOI:10.1111/bph.13746

摘要

BACKGROUND AND PURPOSE Toll-like receptor 4 (TLR4) plays a key role in the induction of inflammatory responses both in peripheral organs and the CNS. Curcumin exerts anti-inflammatory functions by interfering with LPS-induced dimerization of TLR4-myeloid differentiation protein-2 (MD-2) complex and suppressing pro-inflammatory mediator release. However, the inhibitory mechanism of curcumin remains to be defined. EXPERIMENTAL APPROACH Binding of bis-demethoxycurcumin (GG6) and its cyclized pyrazole analogue (GG9), lacking the 1,3-dicarbonyl function, to TLR4-MD-2 was determined using molecular docking simulations. The effects of these compounds on cytokine release and NF-kappa B activation were examined by ELISA and fluorescence staining in LPS-stimulated primary microglia. Interference with TLR4 dimerization was assessed by immunoprecipitation in Ba/F3 cells. KEY RESULTS Both curcumin analogues bound to the hydrophobic region of the MD-2 pocket. However, only curcumin and GG6, both possessing the 1,3-diketone moiety, inhibited LPS-induced TLR4 dimerization, activation of NF-kappa B and secretion of pro-inflammatory cytokines in primary microglia. Consistent with the ability of 1,3-diketones to coordinate divalent metal ions, LPS stimulation in a low magnesium environment decreased pro-inflammatory cytokine release and NF-kappa B p65 nuclear translocation in microglia and decreased TLR4-MD-2 dimerization in Ba/F3 cells. Curcumin and GG6 also significantly reduced cytokine output in contrast to the pyrazole analogue GG9. CONCLUSIONS AND IMPLICATIONS These results indicate that phenolic 1,3-diketones, with a structural motif able to coordinate magnesium ions, can modulate LPS-mediated TLR4-MD-2 signalling. Taken together, these studies identify a previously uncharacterized mechanism involving magnesium, underlying the inflammatory responses to LPS.

  • 出版日期2017-5
  • 单位McGill