Decaying dark matter as a probe of unification and TeV spectroscopy

作者:Arvanitaki Asimina*; Dimopoulos Savas; Dubovsky Sergei; Graham Peter W; Harnik Roni; Rajendran Surjeet
来源:Physical Review D - Particles, Fields, Gravitation and Cosmology, 2009, 80(5): 055011.
DOI:10.1103/PhysRevD.80.055011

摘要

In supersymmetric unified theories the dark matter particle can decay, just like the proton, through grand unified interactions with a lifetime of order of similar to 10(26) sec. Its decay products can be detected by several experiments-including Fermi, HESS, PAMELA, ATIC, and IceCube-opening our first direct window to physics at the TeV scale and simultaneously at the unification scale similar to 10(16) GeV. We consider possibilities for explaining the electron/positron spectra observed by HESS, PAMELA, and ATIC, and the resulting predictions for the gamma-ray, electron/positron, and neutrino spectra as will be measured, for example, by Fermi and IceCube. The discovery of an isotropic, hard gamma ray spectral feature at Fermi would be strong evidence for dark matter and would disfavor astrophysical sources such as pulsars. Substructure in the cosmic ray spectra probes the spectroscopy of new TeV-mass particles. For example, a preponderance of electrons in the final state can result from the lightness of selectrons relative to squarks. Decaying dark matter acts as a sparticle injector with an energy reach potentially higher than the LHC. The resulting cosmic ray flux depends only on the values of the weak and unification scales.

  • 出版日期2009-9