Advanced germanium nanoparticle composite anodes using single wall carbon nanotube conductive additives

作者:Forney M W; Dzara M J; Doucett A L; Ganter M J; Staub J W; Ridgley R D; Landi B J*
来源:Journal of Materials Chemistry A, 2014, 2(35): 14528-14535.
DOI:10.1039/c4ta02011a

摘要

The morphology, thermal stability, impedance, and rate performance of germanium nanoparticle (Ge-NP) based lithium ion battery electrodes that incorporate single-walled carbon nanotube (SWCNT) conductive additives has been systematically studied for varying SWCNT loadings (1-3% w/w SWCNT) and electrode areal capacities (4-12 mA h cm(-2)). Scanning electron microscopy (SEM) was used to characterize the surface coverage for carbon black and SWCNT conductive additives. Differential scanning calorimetry (DSC) analysis shows a 30% reduction in exothermic release with SWCNT conductive additives, which demonstrates improved thermal stability for Ge-NP electrodes. Electrochemical impedance spectroscopy (EIS) indicates that the charge transfer impedance can be reduced roughly 2.5x when comparing 5% carbon black to %26lt;= 3% SWCNT conductive additive. Electrochemical cycling and rate testing demonstrate that SWCNT conductive additives provide significantly improved specific capacities (1100 mA h g(-1) with 1% SWCNT) and rate performance (80% capacity retention at effective 1 C rate) over traditional carbon black conductive additives when using Ge-NP active material. In addition to the benefits for thermal stability, impedance, and rate performance, predicted energy density gains from Ge-NP anodes can be up to 20-25% in full batteries.

  • 出版日期2014