摘要

An optical router with multistage distributed management features for the asynchronous optical packet switching (OPS) network is presented, which can improve switching capacity and all-optical scalability. A compact recycling-fiber-delay-line (Rec-FDL) based collision resolution mechanism is proposed to resolve the contentions for asynchronous and variable length optical packets. The analysis models of stabilities, packet loss rates (PLR) and average packet waiting latencies (PWL) for the router are developed based on the timer based optical packet assembly algorithm. The simulation shows that PLR and PWL for a 400-byte optical packet transmitted in the 32 wavelengths dense wavelength division multiplexing (DWDM) system equal to 3.48 x 10(-4) and 0.072 ns, respectively. The non-blocking switching can be realized for the packets with lengths less than the buffer granularity of the Rec-FDL, and the optimized performance for the proposed router can be obtained through properly selecting of the system parameters.