摘要

This paper investigates control design for the platoon of automated vehicles whose sensors have limited sensing capability. A novel hybrid platoon model is established, in which actuator delay (e. g., the fueling and braking delay) and the effect of sensing range limitation are involved. Based on the new model, a framework of guaranteed-cost controller design is presented, which can robustly stabilize the platoon of vehicles with a given level of disturbance attenuation. The obtained controller is complemented by additional conditions that were established to guarantee string stability and zero steady-state spacing error, yielding a useful string-stable platoon control algorithm. The effectiveness and advantage of the presented methodology is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.