摘要

The mechanical wear of train components is one of the main sources of airborne particles in subway air. A certain contribution is suspected to derive from third-rail systems due to the sliding of two metallic surfaces between conductor rail and collector shoe during operation. In this study, a pin-on-disc apparatus was used to simulate the friction between such two sliding partners (shoe-to-rail). Airborne particles generated from the sliding contact were measured by particle counters (a fast mobility particle sizer spectrometer and an optical particle sizer) and were collected by an electrical low-pressure impactor for physical and chemical analysis. Interface temperature for each test was measured by a thermocouple. The influence of sliding velocity and temperature on particulate number concentration, size distribution, and chemical composition was investigated. Atomic absorption spectroscopy, cyclic voltammetry, and energy-dispersive spectroscopy measurements were carried out to determine the chemical compositions. Results show that increasing sliding velocity results in a higher temperature at the frictional interface and a higher concentration of ultrafine particles. The ratio of manganese to iron surface oxides increased strongly with smaller particle size. A copper compound was observed in some particle samples, probably gerhardite (Cu2NO3(OH)(3)) formed due to high temperature.

  • 出版日期2016-12