摘要

Purpose - The purpose of this paper is to study a new method to appraise pressure comfort through displacement distribution, and then explore the relationship between pressure and stiffness coefficient, and elastic elongation of the top part of men's socks using finite element method. Design/methodology/approach - Through 3D body scanning, a biomechanical lower leg cross-section model is constructed for simulating elastic contact between human body and top part of socks. The human body is regarded as an elastomer and the contact between lower leg and top part of socks is elastic contact, displacement distribution tendency under pressure can be obtained using ANSYS, and the elastic elongation of top part of socks after putting on was calculated based on the displacement values. In this research work, the authors discuss in details with the relationship between pressure and stiffness coefficient, and elastic elongation of top part of socks. Findings - In this research work, the mathematical equation of pressure is obtained which describe the relationship between pressure and stiffness coefficient, and elastic elongation of top part of socks. The results indicated that the predictive values of pressure show good agreement with measured ones after chi(2) test. All these solutions supply a theory basis for forecasting of the clothing pressure. Research limitations/implications - This paper is unconcerned with the simulating of pressure distribution and variation trend when dressing during the course of walking and running. Originality/value - The paper provides a finite element simulation model of lower leg cross-section located at the top part of men's socks, and study the relationship between pressure and stiffness coefficient, and elastic elongation of top part of socks. It can supply a new method to appraise pressure comfort.