摘要

Straw checkerboard barrier (SCB) is the most representative antidesertification measure and plays a significant role in antidesertification projects. Large-eddy simulation and discrete-particle tracing were used to numerically simulate the wind sand movement inside the straw checkerboard barrier (SCB), study the movement characteristics of sand particles, find the transverse velocities of sand particles and flow field, and obtain the contour of the transverse velocity of coupled wind field within the SCB. The results showed that 1) compared with that at the inlet of the SCB, the sand transport rate inside the SCB greatly decreases and the speed of sand grain movement also evidently drops, indicating that the SCB has very good sand movement preventing and fixing function; 2) within the SCB there exists a series of unevenly distributed eddies of wind sand flow, their strength decreases gradually with increasing the transverse distance; 3) affected by eddies or reflux, sand particles carried by the wind sand flow have to drop forward and backward the two interior walls inside the SCB, respectively, forming a v-shaped sand trough; 4) the sand transport rate gradually decreases with increasing number of SCBs, which reveals that the capacity of the wind field to transport sand particles decreases. This research is of significance in sandstorm and land desertification control.