摘要

Semliki Forest virus (SFV), an alphavirus, replicates in vertebrate host and mosquito vector cells. The virus-specific part of the replicase complex constitutes nonstructural proteins 1-4 (nsP1-nsP4) and is bound to cytoplasmic membranes by an amphipathic helix inside of nsP1 and through the palmitoylation of cysteine residues in nsP1. In mammalian cells, defects in these viral functions result in a nonviable phenotype or the emergence of second-site compensatory mutations that have a positive impact on SFV infection. In most cases, these second-site compensatory mutations were found to compensate for the defect caused by the absence of palmitoylation in mosquito cells (C6/36). In C6/36 cells, however, all palmitoylation-defective viruses had severely reduced synthesis of subgenomic RNA; at the same time, several of them had very efficient formation of defective interfering genomes. Analysis of C6/36 cells that individually expressed either wild type (wt) or palmitoylation-deficient nsP1 forms revealed that similar to mammalian cells, the wt nsP1 localized predominantly to the plasma membrane, whereas its mutant forms localized to the cytoplasm. In contrast to transfected mammalian cells, all forms of nsP1 induced the formation of filopodia-like structures on some, but not all, transfected mosquito cells. These findings indicate that the plasma membrane and associated host factors may have different roles in alphavirus replicase complex formation in mammalian and mosquito cells. In general, the lack of nsP1 palmitoylation had a less severe effect on the function of the replication complex in mammalian cells when compared with that in mosquito cells.

  • 出版日期2010-11