摘要

Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all the detection attacks. Based on decoy-state method, MDI-QKD can be implemented with nonperfect single-photon sources. In this paper, the performance of three-intensity decoy-state MDI-QKD under asymmetric channel transmittance efficiency is considered and compared with the results under the symmetric choice scenario. The relation between security key generation rate and the total transmission loss is shown with exchanged ratio of the two distances between Alice to the untrusted third party and Bob to the third party. Based on the relationship, an optimal intensity method is proposed to improve the key rate for a fixed distance ratio, which will provide important parameters for practical experiment.