An Integrated Method for Designing Airfoils Shapes

作者:Wang Xudong*; Wang Licun; Xia Hongjun
来源:Mathematical Problems in Engineering, 2015, 2015: 838674.
DOI:10.1155/2015/838674

摘要

A new method for designing wind turbine airfoils is presented in this paper. As a main component in the design method, airfoil profiles are expressed in a trigonometric series form using conformal transformations and series of polynomial equations. The characteristics of the coefficient parameters in the trigonometric expression for airfoils profiles are first studied. As a direct consequence, three generic airfoil profiles are obtained from the expression. To validate and show the generality of the trigonometric expression, the profiles of the NACA 64418 and S809 airfoils are expressed by the present expression. Using the trigonometric expression for airfoil profiles, a so-called integrated design method is developed for designing wind turbine airfoils. As airfoil shapes are expressed with analytical functions, the airfoil surface can be kept smooth in a high degree. In the optimization step, drag and lift force coefficients are calculated using the XFOIL code. Three new airfoils CQ-A15, CQ-A18, and CQ-A21 with a thickness of 15%, 18%, and 21%, respectively, are designed with the new integrated design method.