摘要

Roller infusion by nip rollers is widely used in the infusion industry with broad applications, which is also adopted as one of the seven steps of a newly developed manufacturing process for making fungal mycelium-based biocomposites. One important technical issue related to infusion textile reinforcements for such biocomposites is how to predict and control the infusion fluid penetration depth, which directly affects the quality and performances of the preformed textile skins. Currently, the analytical relations between the modeling parameters and the final infusion penetration depth are still not well understood. Few studies have been performed on such topic and some of which used oversimplified assumptions. A new analytical model is developed in this paper, and the infusion penetration curves are plotted based on certain input parameters including infusion speed, infusion fluid flow rate, and clamping forces of the two rollers. The model-calculated results are then validated by experiments that are performed with the same parameters. The measured parameters of prepared non-Newtonian starch-based natural glue are used both in the modeling and experiments, and the results are close enough for model validation.

  • 出版日期2018-4