Negative stiffness in ZrW2O8 inclusions as a result of thermal stress

作者:Romao Carl P; White Mary Anne*
来源:Applied Physics Letters, 2016, 109(3): 031902.
DOI:10.1063/1.4959094

摘要

Materials with negative stiffness, although inherently unstable in isolation, can be stabilized by external constraints, for example, by inclusion within a material with positive stiffness. We have identified ZrW2O8, a material with negative thermal expansion, as a candidate negative-stiffness material arising from its negative bulk modulus during a ferroelastic cubic-orthorhombic pressure-induced phase transition (PIPT). A hyperelastic constituent equation for this transition was developed and implemented in a finite-element model of ZrW2O8 inclusions in positive stiffness, positive thermal expansion matrices. In these matrices, thermal stress during cooling, originating from thermal expansion mismatch, would be sufficient to initiate the PIPT after small temperature drops. The subsequent progress of the PIPT depends strongly on the thermoelastic properties of the matrix, with stiff, low thermal expansion matrices stabilizing the transition state over broad temperature ranges, indicating that ZrW2O8 or materials with similar properties could be used as versatile negative-stiffness inclusion materials. The models were used to understand previous experiments on composites that include ZrW2O8. Published by AIP Publishing.

  • 出版日期2016-7-18