摘要

Misexpression of the AtNPC1 - 1 and AtNPC1 - 2 genes leads to altered sphingolipid metabolism, growth impairment, and male reproductive defects in a hemizygous Arabidopsis thaliana (L.) double-mutant population. Abolishing the expression of both gene copies has lethal effects. Niemann-Pick disease type C1 is a lysosomal storage disorder caused by mutations in the NPC1 gene. At the cellular level, the disorder is characterized by the accumulation of storage lipids and lipid trafficking defects. The Arabidopsis thaliana genome contains two genes (At1g42470 and At4g38350) with weak homology to mammalian NPC1. The corresponding proteins have 11 predicted membrane-spanning regions and contain a putative sterol-sensing domain. The At1g42470 protein is localized to the plasma membrane, while At4g38350 protein has a dual localization in the plasma and tonoplast membranes. A phenotypic analysis of T-DNA insertion mutants indicated that At1g42470 and At4g38350 (designated AtNPC1-1 and AtNPC1-2, respectively) have partially redundant functions and are essential for plant reproductive viability and development. Homozygous plants impaired in the expression of both genes were not recoverable. Plants of a hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 population were severely dwarfed and exhibited male gametophytic defects. These gene disruptions did not have an effect on sterol concentrations; however, hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 mutants had increased fatty acid amounts. Among these, fatty acid alpha-hydroxytetracosanoic acid (h24:0) occurs in plant sphingolipids. Follow-up analyses confirmed the accumulation of significantly increased levels of sphingolipids (assayed as hydrolyzed sphingoid base component) in the hemizygous double-mutant population. Certain effects of NPC1 misexpression may be common across divergent lineages of eukaryotes (sphingolipid accumulation), while other defects (sterol accumulation) may occur only in certain groups of eukaryotic organisms.

  • 出版日期2015-10