摘要

In this paper, we study a supply chain network design problem which consists of one external supplier, a set of potential distribution centers, and a set of retailers, each of which is faced with uncertain demands for multiple commodities. The demand of each retailer is fulfilled by a single distribution center for all commodities. The goal is to minimize the system-wide cost including location, transportation, and inventory costs. We propose a general nonlinear integer programming model for the problem and present a cutting plane approach based on polymatroid inequalities to solve the model. Randomly generated instances for two special cases of our model, i.e., the single-sourcing UPL&TAP and the single-sourcing multi-commodity location-inventory model, are provided to test our algorithm. Computational results show that the proposed algorithm can solve moderate-sized problem instances efficiently.