摘要

Multicatalysis cascade (MCC) process for the synthesis of highly substituted chiral building blocks (2-alkyl-CH-acids, 2-alkylcyclohexane-1,3-diones, 2-alkylcyclopentane-1,3-diones, and H-P ketone analogues) is presented based on the cascade three-component reductive alkylation's (TCRA) platform. Herein, we developed the high-yielding alkylation of a variety of CH-acids with (R)-glyceraldehyde acetonide/(S)-Garner aldehyde and Hantzsch ester through amino acid-catalyzed TCRA reaction without racemization at the alpha-position to carbonyl. Direct sequential combination of the L-proline-catalyzed TCRA reaction with other reactions like cascade alkylation/ketenization/esterification (A/K/E), alkylation/ketenization/esterification/alkylation (A/K/E/A), Bronsted acid-catalyzed cascade hydrolysis/lactonization/esterification (H/L/E), hydrolysis/esterification (H/E), hydrolysis/oxy-Michael/dehydration (H/OM/DH), and Robinson annulation (RA) of CH-acids, chiral aldehydes, Hantzsch ester, diazomethane, methyl vinyl ketone, various active olefins, and acetylenes furnished the highly functionalized chiral building blocks in good to high yields with excellent diastereoselectivities. In this context, many of the pharmaceutically applicable chiral building blocks were prepared via MCC reactions.

  • 出版日期2010-1-1