Mechanical and Thermal Properties of Wood-Plastic Composites Reinforced With Hexagonal Boron Nitride

作者:Ayrilmis Nadir*; Dundar Turker; Kaymakci Alperen; Ozdemir Ferhat; Kwon Jin Heon
来源:Polymer Composites, 2014, 35(1): 194-200.
DOI:10.1002/pc.22650

摘要

Mechanical, thermal, and morphological properties of injection molded wood-plastic composites (WPCs) prepared from poplar wood flour (50 wt%), thermoplastics (high density polyethlyne or polypropylene) with coupling agent (3 wt%), and hexagonal boron nitride (h-BN) (2, 4, or 6 wt%) nanopowder were investigated. The flexural and tensile properties of WPCs significantly improved with increasing content of the h-BN. Unlike the tensile and flexural properties, the notched izod impact strength of WPCs decreased with increasing content of h-BN but it was higher than that of WPCs without the h-BN. The WPCs containing h-BN were stiffer than those without h-BN. The tensile elongation at break values of WPCs increased with the addition of h-BN. The differential scanning calorimetry (DSC) analysis showed that the crystallinity, melting enthalpy, and crystallization enthalpy of the WPCs increased with increasing content of the h-BN. The increase in the crystallization peak temperature of WPCs indicated that h-BN was the efficient nucleating agent for the thermoplastic composites to increase the crystallization rate. POLYM. COMPOS., 35:194-200, 2014.

  • 出版日期2014-1