摘要

In the past, security protocols including key transport protocols are designed with the assumption that there are two parties communication with each other and an adversary tries to intercept this communication. In Delay/Disruption Tolerant Networking (DTN), packet delivery relies on intermediate parties in the communication path to store and forward the packets. DTN security architecture requires that integrity and authentication should be verified at intermediate nodes as well as at end nodes and confidentiality should be maintained for end communicating parties. This requires new security protocols and key management to be defined for DTN as traditional end-to-end security protocols will not work with DTN. To contribute towards solving this problem, we propose a novel Efficient and Scalable Key Transport Scheme (ESKTS) to transport the symmetric key generated at a DTN node to other communicating body securely using public key cryptography and proxy signatures. It is unique effort to design a key transport protocol in compliance with DTN architecture. ESKTS ensures that integrity and authentication is achieved at hop-by-hop level as well as end-to-end level. It also ensures end-to-end confidentiality and freshness for end communicating parties. This scheme provides a secure symmetric key transport mechanism based on public key cryptography to exploit the unique bundle buffering characteristics of DTN to reduce communication and computation cost .

  • 出版日期2014-8